Effect of SRTM resolution on morphometric feature identification using neural network - self organizing map

نویسندگان

  • Amir Houshang Ehsani
  • Friedrich Quiel
  • Arash Malekian
چکیده

In this study, we present a semi-automatic procedure using Neural Networks— Self Organizing Map—and Shuttle Radar Topography Mission DEMs to characterize morphometric features of the landscape in the Man and Biosphere Reserve “Eastern Carpathians”. We investigate specially the effect of two resolutions, SIR-C with 3 arc seconds and X-SAR with 1 arc second for morphometric feature identification. Specifically we investigate how the SRTM/C band data with 30 m interpolated grid, corresponding to SRTM/X band 30 m, affect the morphometric characterization and topography derivatives. To reduce misregistration between the DEMs, spatial co-registration was performed and a RMSE of 0.48 pixel was achieved. Morphometric parameters such as slope, maximum curvature, minimum curvature and cross-sectional curvature are derived using a bivariate quadratic approximation on 90 m, 30 m and interpolated 30 m DEMs. Self Organizing Map (SOM) is used for the classification of morphometric parameters into ten exclusive and exhaustive classes. These classes were analyzed as morphometric features such as ridge, channel, crest line and planar for all data sets based on feature space (scatter plot), morphometric signatures and 3D inspection of the area. The map quality is analyzed by oblique views with contour lines overlaid. Using the X band DEM with 30 m grid as benchmark, a change detection technique was used to quantify differences in morphometric features and to assess the scale effect going from a 90 m (C-band) DEM to an interpolated Geoinformatica (2010) 14:405–424 DOI 10.1007/s10707-009-0085-4 A. H. Ehsani International Research Center For Living With Desert, University of Tehran, Tehran, Iran F. Quiel Division of Environmental and Natural Resources Information Systems, Department of Civil and Architectural Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden A. Malekian International Research Center for Living with Desert, University of Tehran, P.O. Box 14185-354, Tehran, Iran e-mail: [email protected]? Present Address: A. H. Ehsani (*) P.O. Box 14185-354, Tehran, Iran e-mail: [email protected] 30 m DEM. The same procedure is used to study the effect of different resolutions on morphometric features. Morphometric parameters were computed by a moving window size 5×5 (corresponding to 450 m on the ground) over SRTM90 m. To cover the same ground area, a moving window size of 15×15 is used for the 30 mDEM. The change analysis showed the amount of resolution dependency of morphometric features. Overall, the results showed that the introduced method is very useful for identification of morphometric features based on SRTM resolution. Decreasing the grid size from 90 m to 30 m reveals considerably more detailed information emphasizing local conditions. Comparison between results from DEM30 m as reference data set and interpolated 30 m, showed a rate of change of 31.5% which is negligible. About 17% of this rate correspond to classes with mean slope>10°. Of the morphometric parameters, the cross sectional curvature is most sensitive to DEM resolution. Increasing spatial resolution reduces the main constrains for morphometric analysis with SRTM 90 m data, such as unrealistic features and isolated single elements in the output map. So in case of lack of high resolution data, the SRTM 90 m data could be interpolated and used for further geomorphic analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

DEM-based analysis of morphometric features in humid and hyper-arid environments using artificial neural network

Abstract This paper presents a robust approach using artificial neural networks in the form of a Self Organizing Map (SOM) as a semi-automatic method for analysis and identification of morphometric features in two completely different environments, the Man and Biosphere Reserve “Eastern Carpathians” (Central Europe) in a complex mountainous humid area and Yardangs in Lut Desert, Iran, a hyper...

متن کامل

Kohonen Self Organizing for Automatic Identification of Cartographic Objects

Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

An Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification

Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • GeoInformatica

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2010